The generalized condition numbers of bounded linear operators in Banach spaces
نویسندگان
چکیده
منابع مشابه
Linear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملThe Banach Algebra of Bounded Linear Operators
The papers [21], [8], [23], [25], [24], [5], [7], [6], [19], [4], [1], [2], [18], [10], [22], [13], [3], [20], [16], [15], [9], [12], [11], [14], and [17] provide the terminology and notation for this paper. Let X be a non empty set and let f , g be elements of X . Then g · f is an element of X . One can prove the following propositions: (1) Let X, Y , Z be real linear spaces, f be a linear ope...
متن کاملBanach Algebra of Bounded Complex Linear Operators
The terminology and notation used here are introduced in the following articles: [18], [8], [20], [5], [7], [6], [3], [1], [17], [13], [19], [14], [2], [4], [15], [10], [11], [9], and [12]. One can prove the following propositions: (1) Let X, Y , Z be complex linear spaces, f be a linear operator from X into Y , and g be a linear operator from Y into Z. Then g · f is a linear operator from X in...
متن کاملComplex Banach Space of Bounded Linear Operators
Let X be a set, let Y be a non empty set, let F be a function from [: C, Y :] into Y , let c be a complex number, and let f be a function from X into Y . Then F ◦(c, f) is an element of Y X . We now state the proposition (1) Let X be a non empty set and Y be a complex linear space. Then there exists a function M1 from [: C, (the carrier of Y ) X :] into (the carrier of Y ) such that for every C...
متن کاملBanach Space of Bounded Linear Operators
Let X be a set, let Y be a non empty set, let F be a function from [: R, Y :] into Y , let a be a real number, and let f be a function from X into Y . Then F ◦(a, f) is an element of Y X . One can prove the following propositions: (1) Let X be a non empty set and Y be a non empty loop structure. Then there exists a binary operation A1 on (the carrier of Y ) X such that for all elements f , g of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 2004
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788700008958